

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264549898

Molecular iodine-mediated regioselective synthesis of pyranocoumarins and bis-fused benzo-2H-pyran derivatives

Data · August 2014

CITATIONS O		reads 28					
7 authors, including:							
9	Sintu Ganai Netaji Subhas Open University 27 PUBLICATIONS 202 CITATIONS SEE PROFILE	F	Balasubramanian Sridhar Indian Institute of Chemical Technology 622 PUBLICATIONS 4,439 CITATIONS SEE PROFILE				

Some of the authors of this publication are also working on these related projects:

Synthesis of Triazoles View project

Bio Medical research View project

All content following this page was uploaded by Sintu Ganai on 08 August 2014.

With compliments of the Author

Molecular Iodine Mediated Regioselective Synthesis of Pyranocoumarins and Bis-Fused Benzo-2*H***-pyran Derivatives**

K. C. Majumdar,*^a Biswajit Sinha,^a Inul Ansary,^{a,1} Sintu Ganai,^a Debankan Ghosh,^a B. Roy,^a B. Sridhar^b

^a Department of Chemistry, University of Kalyani, Kalyani 741235, W. B., India E-mail: kcm@klyuniv.ac.in; E-mail: kcm ku@yahoo.co.in

^b Laboratory of X-ray crystallography, IICT Hyderabad, Hyderabad 500007, India

Received: 08.01.2014; Accepted after revision: 25.02.2014

Abstract: A simple and straightforward approach for the regioselective synthesis of pyranocoumarin and bis-fused benzo-2*H*-pyran derivatives using mild, easy to handle, and cheaper molecular iodine mediated heterocyclization is described.

Key words: molecular iodine, 6-*endo*-dig, electrophilic cylization, bis-fused benzo-2*H*-pyrans, pyranocoumarins

2*H*-Benzopyrans or 2*H*-chromenes represent the structural units of a variety of biologically important compounds.² Chroman derivatives are known to possess various useful biological activities, such as antioxidant,³ anticonvulsion,⁴ anti-estrogen,⁵ and neuroprotection.⁶ On the other hand, pyranocoumarin and pyranopyran derivatives are also important class of heterocycles. Their structural motif is found widely in natural products and in many synthetic molecules.⁷ They exhibit biological activities including antifungal, anticancer, insecticidal, anti-inflammatory, anti-HIV, and antibacterial activities (Figure 1).⁸

Because of their biological and pharmaceutical importance much attention has been paid to the isolation and synthesis of 2*H*-pyrans fused with both benzene and coumarin rings.⁹ It is surprising that only few examples of bisfused benzopyran derivatives are known. Different research groups have utilized either metal-catalyzed intramolecular cyclization strategies using AuCl₃, Pd(OAc)₂ as catalysts or iodocyclization reaction using IPy₂BF₄-HBF₄ catalytic system.¹⁰ On the other hand, pyranocoumarins and pyranopyran derivatives have been synthesized by using gold(III)-catalyzed tandem conjugate addition/annulation reaction, ytterbium triflate-catalyzed reactions, and multicomponent reactions (Scheme 1).¹¹

Therefore, it is apparent that synthesis of pyranocoumarins, pyranopyrans, and benzo-2*H*-pyran derivatives are very important. Thus, search for an alternative protocol that is easy to handle and also uses a cheaper reagent is always welcome. In this respect, molecular iodine-mediated heterocyclization can be a useful alternative for the synthesis of benzo-2*H*-pyran derivatives. This is because iodocyclization offers an easy access to the complex molecules that are not always accessible by the usual organometallic reagents.^{12,13} A few attempts were made to

SYNTHESIS 2014, 46, 1807–1814

Advanced online publication: 07.04.2014 DOI: 10.1055/s-0033-1341027; Art ID: SS-2014-Z0020-OP

© Georg Thieme Verlag Stuttgart · New York

synthesize 2*H*-benzopyran derivatives¹⁴ utilizing molecular iodine-mediated heterocyclization, but the synthesis of bis-fused 2*H*-benzopyrans is rare. Moreover, the growing importance of pyranocoumarin derivatives also demands an easy route for their effective syntheses. Therefore, all these findings inspired us to undertake a detailed study on the molecular iodine-mediated intramolecular heterocyclization to access pyranocoumarin and bis-fused 2*H*-benzopyran derivatives. Herein we report our results.

The required precursors 13a-c for this study were synthesized in 72–77% yields from the substrates 12 by the reaction with various *p*-substituted iodobenzenes. The

Banwell et al.10a

Majumdar et al.10b

Barluenga et al.10d

Scheme 1 Literature reports on 2*H*-pyrans fused with both benzene and coumarin rings

Figure 1 Some biologically active 2H-benzopyran, pyranopyran, and pyranocoumarin derivatives

reactions were carried out in the presence of $Pd(PPh_3)_2Cl_2$ as catalyst and copper(I) iodide as co-catalyst in anhydrous triethylamine–DMF (1:4) as mixed solvent at room temperature for three hours. The O-propargylated compound **12** was in turn prepared by refluxing resorcinol **11** with propargyl bromide in acetone in the presence of anhydrous K_2CO_3 . Other precursors **14**, **15**, and **16a**,**b** were prepared accordingly starting from hydroquinone, catechol, and 2,7-dihydroxynaphthol, respectively (Scheme 2).

Scheme 2 Preparation of propargyl ethers. *Reagents and conditions*: (i) propargyl bromide, acetone, K_2CO_3 , NaI, reflux; (ii) *p*-substituted iodobenzene, Pd(PPh_3)₂Cl₂, CuI, DMF-Et₃N, r.t.

Synthesis 2014, 46, 1807-1814

The iodocyclization reaction was performed with the compound **13a**, molecular iodine (2 equiv), and NaHCO₃ (2 equiv) at room temperature in anhydrous acetonitrile for six hours to give the bis-fused benzo-2*H*-pyran derivative **17a** in 65% yield. The reaction occurred by a 6-*endo*-dig mode of cyclization. The 5-*exo*-dig cyclized product was not obtained (Scheme 3).

Scheme 3 Preparation of 17a. Reagents and conditions: (i) I_2 , NaHCO₃, MeCN, r.t.

The product **17a** was characterized by its spectral analysis. The structure was confirmed from the analysis of its single crystal X-ray diffraction¹⁵ data (Figure 2). It is interesting to note that the reaction is regioselective and gave only the linearly cyclized product **17a**.

Optimization experiments were carried out with a view to improve the yield of the products. By varying the amounts of both the iodine and base it was found that 3 equivalents of iodine and 3 equivalents of NaHCO₃ were optimum and the yield of **17a** was unexpectedly increased to 90%. Further increase of the amount of NaHCO₃ (4 equiv) and iodine (4 equiv) did not give any better result. NaHCO₃ was found to be more effective compared to other bases like K₂CO₃, Na₂CO₃, etc. for the completion of the reaction. Dichloromethane or methanol gave lower yields of the product. On the basis of our observations, the optimized conditions for the above reaction is I₂ (3 equiv), NaHCO₃ (3 equiv), MeCN, r.t., six hours, and the results are summarized in Table 1.

Table 1 Optimization of I2-Mediated Reactions

Entry	Electrophile (equiv)	Base (equiv)	Solvent	Product	Yield (%) ^a
1	I ₂ (2)	$NaHCO_3(2)$	MeCN	17a	65
2 ^b	I ₂ (3)	NaHCO ₃ (3)	MeCN	17a	90
3	I ₂ (4)	NaHCO ₃ (4)	MeCN	17a	90
4	I ₂ (3)	$K_{2}CO_{3}(3)$	MeCN	17a	35
5	$I_{2}(3)$	$NaHCO_3(3)$	CH_2Cl_2	17a	25
6	$I_{2}(3)$	$Na_2CO_3(3)$	MeCN	17a	50
7	I ₂ (3)	$NaHCO_3(3)$	MeOH	17a	45

^a Isolated yields.

^b Optimized reaction conditions.

With the optimized reaction conditions in hand, the other substrates **13b**, **c**, **14**, **15**, and **16a**, **b** were treated similarly to afford the bis-fused 2*H*-benzopyran and naphthopyran derivatives **17b**, **c**, **18**, **19**, and **20a**, **b** in 68–85% and 62, 80% yield, respectively (Table 2).

Figure 2 ORTEP diagram of the compound 17a

After achieving the synthesis of the bis-fused iodocyclized products, the reaction was extended to the readily available starting material, 4-hydroxycoumarin to accomplish the synthesis of pyranocoumarin derivatives.

For this purpose, a number of starting materials 22a-d were prepared in moderate to good yields by the Sonogashira coupling reaction of 21 with iodobenzene derivatives. The reactions were performed in the presence of $Pd(PPh_3)_2Cl_2$ as catalyst and copper(I) iodide as co-catalyst in a mixture of anhydrous triethylamine and DMF (1:4) as mixed solvent at room temperature for five hours. The substrate 22a was treated under the optimized reaction conditions (Table 1) to give the pyranocoumarin derivative 23a in 65% yield (Scheme 4).

R = 4-MeOC₆H₄

Scheme 4 Preparation of pyranocoumarin derivative **23a**. *Reaction conditions*: (i) *p*-substituted iodobenzene, Pd(PPh₃)₂Cl₂, CuI, DMF–Et₃N, reflux; (ii) I₂, NaHCO₃, MeCN, r.t., 6 h.

Detailed experiments were carried out by changing solvents and bases. It was found that the optimized reaction conditions stated in Table 1 is also suitable for the above reaction (Scheme 4). The other substrates **22b–d** were also subjected to react under the optimized conditions to afford the cyclized products **23b–d** in 55–72% yields (Table 3).

Here it should be noted that iodobenzenes containing Me, Cl, and NO_2 substituents do not undergo iodocyclization reaction. In these cases, only iodine-addition products

PAPER

 Table 2
 Synthesis of Bis-Fused Benzo-2H-pyran Derivatives

^a Reaction conditions: I₂ (3 equiv), NaHCO₃ (3 equiv), MeCN, r.t.

were obtained as the only isolable products. In contrast, the iodobenzenes containing *p*-methoxy and *p*-ethoxy groups, that is, strong electron-donating groups, reacted efficiently to give the desired cyclized products.

From the above discussion it is clear that the reaction conditions described above are simple and convenient compared to other available methods. They avoid the use of complex and relatively costlier reagents like palladium, ytterbium, gold, etc. and the reactions are carried out at ambient temperature.

In conclusion, the protocol reported here provides an operationally simple method for effective iodocyclization reaction. These reactions are cost effective and proceed under very mild conditions to give a number of important heterocyclic motifs including pyranocoumarins and bisfused 2H-benzopyrans expeditiously from readily accessible starting materials. Moreover, during the reaction the iodine atom is incorporated in the cyclized products that offers scope for further modification.

Melting points were determined in an open capillary and are uncorrected. IR spectra were recorded on a Perkin-Elmer L 120-000A spectrometer on KBr disks. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer in CDCl₃ with TMS as internal standard. CHN analyses were recorded on a 2400 series II CHN analyzer (Perkin-Elmer). DMF was sequentially dried (3 ×) over freshly activated 4 Å molecular sieves and Et₃N was dried by keeping overnight over anhydrous CaH₂ and then distilled after 2 h at reflux. Silica gel (60–120 mesh and 230–400 mesh, Spectrochem, India) were used for chromatographic separation. Silica gel G and silica gel GF-254 (Spectrochem, India) were used for TLC analyses.

Table 3 Synthesis of Pyranocoumarin and Pyranopyran Derivatives

^a Reaction conditions: I₂ (3 equiv), NaHCO₃ (3 equiv), MeCN, r.t.

Petroleum ether (PE) refers to the fraction boiling between 60–80 °C.

Propargyl Ethers 13a–c, 14, 15, and 16a,b; Compound 13a; Typical Procedure

A mixture of compound **12** (300 mg, 1.6 mmol), *p*-chloroiodobenzene (920 mg, 3.9 mmol), anhydrous Et₃N (2 mL), Pd(PPh₃)₂Cl₂ (34 mg, 3 mol%), and CuI (9 mg, 3 mol%) was stirred in anhydrous DMF (8 mL) at r.t. for 3 h. Then, the reaction mixture was diluted to 30 mL with CH₂Cl₂. The organic phase was washed successively with H₂O (3×15 mL) and brine (15 mL), and dried (Na₂SO₄). The solvent was removed under reduced pressure and the crude product was purified by silica gel (60–120 mesh) column chromatography using EtOAc–PE (1:19) as an eluent to give the solid compound **13a**; yield: 505 mg (77%); colorless solid; mp 118–119 °C.

IR (KBr): 1608, 2237, 2845 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 4.88 (s, 4 H, OCH₂), 6.66–6.70 (m, 3 H, ArH), 7.22–7.28 (m, 5 H, ArH), 7.35 (d, *J* = 8.4 Hz, 4 H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ = 56.7, 84.7, 86.1, 102.5, 107.9, 120.7, 128.7, 130.0, 133.1, 134.8, 159.0.

MS (ESI): *m*/*z* = 428.92 [M + Na]⁺, 430.90 [M + Na + 2]⁺, 432.90 [M + Na + 4]⁺.

Anal. Calcd for $C_{24}H_{16}Cl_2O_2$: C, 70.77; H, 3.96. Found: C, 70.72; H, 3.88.

13b

Yield: 445 mg (75%); colorless solid; mp 112-114 °C.

IR (KBr): 1614, 2230, 2860 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.33 (s, 6 H, CH₃), 4.89 (s, 4 H, OCH₂), 6.67 (dd, *J* = 8.4, 2.4 Hz, 2 H, ArH), 6.72 (d, *J* = 2.0 Hz, 1 H, ArH), 7.09 (d, *J* = 8.0 Hz, 4 H, ArH), 7.22 (t, *J* = 8.4 Hz, 1 H, ArH), 7.33 (d, *J* = 8.0 Hz, 4 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 21.5, 56.9, 83.1, 87.4, 102.5, 107.9, 119.2, 129.0, 129.9, 131.8, 138.8, 159.1.

HRMS (ESI): m/z calcd for $C_{26}H_{22}O_2$: 389.1517 [M + Na]⁺; found: 389.1518 [M + Na]⁺.

Yield: 460 mg (72%); colorless solid; mp 100–101 °C.

IR (KBr): 1604, 2227, 2840 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.79 (s, 6 H, OCH₃), 4.88 (s, 4 H, OCH₂), 6.66 (dd, *J* = 8.4 Hz, 2.0 Hz, 2 H, ArH), 6.72 (d, *J* = 2.0 Hz, 1 H, ArH), 6.80 (d, *J* = 8.8 Hz, 4 H, ArH), 7.23 (t, *J* = 8.4 Hz, 1 H, ArH), 7.37 (d, *J* = 8.8 Hz, 4 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 55.3, 56.9, 82.4, 87.2, 102.5, 107.8, 113.9, 114.3, 129.9, 133.4, 159.1, 159.9.

Anal. Calcd for $C_{26}H_{22}O_4$: C, 78.37; H, 5.57. Found: C, 78.49; H, 5.39.

14

13c

Yield: 405 mg (63%); colorless solid; mp 130-131 °C.

IR (KBr): 1602, 2230, 2855 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.80 (s, 6 H, OCH₃), 4.85 (s, 4 H, OCH₂), 6.81 (d, *J* = 8.8 Hz, 4 H, ArH), 6.99 (s, 4 H, ArH), 7.37 (d, *J* = 8.8 Hz, 4 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 55.3, 57.5, 57.6, 82.8, 87.1, 113.9, 114.4, 116.0, 116.1, 116.4, 133.3, 152.0, 152.6, 159.8.

Anal. Calcd for $C_{26}H_{22}O_4$: C, 78.37; H, 5.57. Found: C, 78.51; H, 5.42.

15

Yield: 450 mg (70%); colorless solid; mp 92–93 °C.

IR (KBr): 1604, 2224, 2836 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.79 (s, 6 H, OCH₃), 4.98 (s, 4 H, OCH₂), 6.80 (d, *J* = 8.8 Hz, 4 H, ArH), 6.97 (dd, *J* = 6.0, 4.0 Hz, 2 H, ArH), 7.14 (dd, *J* = 6.0, 3.6 Hz, 2 H, ArH), 7.34 (d, *J* = 8.8 Hz, 4 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 55.3, 57.8, 82.7, 87.4, 113.9, 114.0, 114.5, 115.0, 121.9, 133.3, 147.9, 159.8.

Anal. Calcd for $C_{26}H_{22}O_4$: C, 78.37; H, 5.57. Found: C, 78.29; H, 5.68.

16a

Yield: 290 mg (55%); yellow solid; mp 132–134 °C.

IR (KBr): 1625, 2233, 2921 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.33 (s, 6 H, CH₃), 5.01 (s, 4 H, OCH₂), 7.07–7.11 (m, 6 H, ArH), 7.25 (s, 2 H, ArH), 7.32 (d, *J* = 7.6 Hz, 4 H, ArH), 7.69 (d, *J* = 8.8 Hz, 2 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 21.5, 56.8, 83.1, 87.5, 107.1, 116.6, 119.2, 124.9, 129.1, 129.2, 131.7, 135.6, 138.8, 156.4.

Anal. Calcd for $C_{30}H_{24}O_2{:}$ C, 86.51; H, 5.81. Found: C, 86.79; H, 5.88.

16b

Yield: 320 mg (55%); yellow solid; mp 71-72 °C.

IR (KBr): 1629, 2228, 2923 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 5.01 (s, 4 H, OCH₂), 7.10 (dd, *J* = 8.8, 2.4 Hz, 2 H, ArH), 7.22–7.24 (m, 6 H, ArH), 7.35 (d, *J* = 8.4 Hz, 4 H, ArH), 7.70 (d, *J* = 8.8 Hz, 2 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 56.6, 84.8, 86.2, 107.0, 116.6, 120.7, 125.0, 128.7, 129.4, 133.0, 134.8, 135.5, 156.3.

Anal. Calcd for $C_{28}H_{18}Cl_2O_2$: C, 73.53; H, 3.97. Found: C, 73.37; H, 3.88.

Bis-Fused Benzo-2*H*-pyran Derivatives 17a-c, 18, 19, and 20a,b; Compound 17a; Typical Procedure

A mixture of compound **13a** (100 mg, 0.24 mmol), molecular iodine (183 mg, 0.72 mmol), and anhydrous NaHCO₃ (60 mg, 0.72 mmol) was stirred in anhydrous MeCN (10 mL) at r.t. for 6 h. Then, CH₂Cl₂ (50 mL) was added to the reaction mixture. The organic phase was washed successively with 10% aq Na₂S₂O₃ (15 mL), H₂O (15 mL), and brine (15 mL), and dried (Na₂CO₃). The solvent was removed under reduced pressure and the crude product was purified by silica gel (230–400 mesh) column chromatography using PE–EtOAc (9.7:0.3) as eluent to give the solid product **17a**; yield: 145 mg (90%); colorless solid; mp 176–177 °C.

IR (KBr): 1612, 2831 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 5.00 (s, 4 H, OCH₂), 5.70 (s, 1 H, ArH), 6.36 (s, 1 H, ArH), 6.90 (d, *J* = 8.4 Hz, 4 H, ArH), 7.25 (d, *J* = 8.4 Hz, 4 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 75.4, 92.1, 113.8, 118.9, 125.4, 130.6, 131.8, 140.9, 141.4, 159.3.

MS (ESI): $m/z = 658.62 [M + H]^+$, $660.71 [M + H + 2]^+$.

HRMS (ESI): m/z calcd for $C_{24}H_{14}Cl_2I_2O_2$: 658.8538 [M + H]⁺; found: 658.8500 [M + H]⁺.

17b

Yield: 145 mg (85%); colorless solid; mp 192-193 °C.

IR (KBr): 1609, 2838 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.32 (s, 6 H, CH₃), 5.00 (s, 4 H, OCH₂), 5.80 (s, 1 H, ArH), 6.34 (s, 1 H, ArH), 6.84 (d, *J* = 8.0 Hz, 4 H, ArH), 7.03 (d, *J* = 8.0 Hz, 4 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 21.2, 75.1, 86.4, 103.3, 118.0, 125.2, 128.7, 128.9, 136.2, 137.4, 141.2, 154.6.

MS (ESI): $m/z = 640.73 [M + Na]^+$.

Anal. Calcd for $C_{26}H_{20}I_2O_2$: C, 50.51; H, 3.26. Found: C, 50.68; H, 3.18.

17c

Yield: 130 mg (80%); colorless solid; mp 168-170 °C.

IR (KBr): 1602, 2847 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.85 (s, 3 H, OCH₃), 3.87 (s, 3 H, OCH₃), 4.35 (s, 2 H, OCH₂), 4.93 (s, 2 H, OCH₂), 6.38 (d, *J* = 8.4

Hz, 1 H, ArH), 6.52 (d, J = 8.4 Hz, 1 H, ArH), 6.91–6.95 (m, 4 H, ArH), 7.05 (d, J = 8.0 Hz, 2 H, ArH), 7.12 (d, J = 8.0 Hz, 2 H, ArH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.2$, 74.1, 75.6, 87.9, 90.0, 109.1, 113.0, 113.8, 114.1, 120.2, 127.6, 129.6, 130.6, 132.1, 135.2, 139.3,

113.0, 113.8, 114.1, 120.2, 127.0, 129.0, 130.6, 132.1, 135.2, 139.3, 141.2, 149.2, 155.8, 158.7, 159.3. Anal. Calcd for $C_{26}H_{20}I_2O_4$: C, 48.02; H, 3.10. Found: C, 48.17; H,

Anal. Calcd for $C_{26}H_{20}I_2O_4$: C, 48.02; H, 3.10. Found: C, 48.17; H, 2.96.

18

Yield: 115 mg (70%); colorless solid; mp 188-189 °C.

IR (KBr): 1602, 2837 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.85 (s, 6 H, OCH₃), 4.69 (d, *J* = 12.8 Hz, 2 H, OCH_aH_b), 4.94 (d, *J* = 12.8 Hz, 2 H, OCH_aH_b), 6.57 (d, *J* = 8.8 Hz, 4 H, ArH), 6.64 (d, *J* = 8.8 Hz, 4 H, ArH), 6.97 (s, 1 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 55.3, 75.1, 92.6, 113.5, 114.0, 125.0, 130.5, 131.7, 141.2, 147.6, 159.4.

MS (ESI): $m/z = 650.73 [M + H]^+$.

Anal. Calcd for $C_{26}H_{20}I_2O_4$: C, 48.02; H, 3.10. Found: C, 48.21; H, 3.01.

19

Yield: 110 mg (68%); yellow solid; mp 158–159 °C.

IR (KBr): 1608, 2831 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.83 (s, 6 H, OCH₃), 5.12 (s, 4 H, OCH₂), 6.09 (s, 2 H, ArH), 6.91 (d, *J* = 8.4 Hz, 4 H, ArH), 7.07 (d, *J* = 8.4 Hz, 4 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 55.2, 75.4, 92.1, 113.8, 118.9, 125.4, 130.6, 131.8, 140.9, 141.4, 159.3.

MS (ESI): $m/z = 672.71 [M + Na]^+$.

Anal. Calcd for $C_{26}H_{20}I_2O_4$: C, 48.02; H, 3.10. Found: C, 48.16; H, 3.13.

20a

Yield: 130 mg (80%); yellow solid; mp 162-163 °C.

IR (KBr): 1615, 2932 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.31 (s, 6 H, CH₃), 3.57 (d, *J* = 12.4 Hz, 2 H, OCH_aH_b), 4.65 (d, *J* = 12.4 Hz, 2 H, OCH_aH_b), 6.93 (d, *J* = 8.8 Hz, 2 H, ArH), 7.64 (d, *J* = 8.4 Hz, 2 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 21.2, 76.9, 79.5, 113.9, 120.8, 125.8, 127.4, 130.0, 131.2, 136.8, 137.1, 142.4, 156.7.

MS (ESI): $m/z = 669.07 [M + H]^+$, $691.07 [M + Na]^+$.

Anal. Calcd for $C_{30}H_{22}I_2O_2{:}\ C,\ 53.92;\ H,\ 3.32.$ Found: C, 54.01; H, 3.41.

20b

Yield: 95 mg (62%); yellow solid; mp 194–195 °C.

IR (KBr): 1603, 2962 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.57 (d, J = 12.4 Hz, 2 H, OCH_aH_b), 4.67 (d, J = 12.8 Hz, 2 H, OCH_aH_b), 6.89 (d, J = 8.8 Hz, 2 H, ArH), 7.60 (d, J = 8.8 Hz, 2 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 29.7, 76.9, 80.6, 114.3, 120.1, 125.8, 127.0, 129.4, 131.8, 133.4, 138.0, 141.3, 157.0.

HRMS (ESI): m/z calcd for $C_{28}H_{16}Cl_2I_2O_2$: 708.8695 $[M + H]^+,$ 710.8695 $[M + H + 2]^+;$ found: 708.8687 $[M + H]^+,$ 710.8807 $[M + H + 2]^+.$

Propargyl Ethers 22a-d; Compound 22a; Typical Procedure

A mixture of compound **21** (300 mg, 1.50 mmol), *p*-methoxyiodobenzene (1.80 mmol), anhydrous Et_3N (2 mL), Pd(PPh_3)₂Cl₂ (3 mol%), and CuI (3 mol%) was stirred in anhydrous DMF (8 mL) at r.t. for 5 h. Then, the reaction mixture was diluted to 70 mL with CH₂Cl₂. The organic phase was washed successively with H₂O ($3 \times 25 \text{ mL}$) and brine (25 mL), and dried (Na₂SO₄). The solvent was removed under reduced pressure and the crude product was purified by silica gel (60–120 mesh) column chromatography using EtOAc–PE (1:19) as eluent to give compound **22a**; yield: 350 mg (76%); yellow solid; mp 120–122 °C.

IR (KBr): 1728, 2232, 2931 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.82 (s, 3 H, OCH₃), 5.09 (s, 2 H, OCH₂), 5.93 (s, 1 H, ArH), 6.84 (d, *J* = 8.4 Hz, 2 H, ArH), 7.29–7.34 (m, 2 H, ArH), 7.40 (d, *J* = 8.4 Hz, 2 H, ArH), 7.56 (t, *J* = 8.4 Hz, 2 H, ArH), 7.87 (d, *J* = 7.6 Hz, 1 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 55.3, 58.0, 79.6, 89.5, 91.6, 114.1, 115.6, 116.8, 123.2, 123.9, 132.5, 133.6, 153.4, 160.3, 162.7, 164.8.

MS (ESI): $m/z = 321.12 [M + H]^+$.

Anal. Calcd for $C_{19}H_{14}O_4$: C, 74.50; H, 4.61. Found: C, 74.38; H, 4.73.

22b

Yield: 365 mg (72%); brown solid; mp 108-109 °C.

IR (KBr): 1733, 2224, 2931 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.41 (s, 3 H, CH₃), 3.82 (s, 3 H, OCH₃), 5.07 (s, 2 H, OCH₂), 5.89 (s, 1 H, ArH), 6.84 (d, *J* = 7.8 Hz, 2 H, ArH), 7.21 (d, *J* = 8.4 Hz, 1 H, ArH), 7.35 (d, *J* = 8.4 Hz, 1 H, ArH), 7.66 (s, 1 H, ArH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 20.9, 55.3, 57.9, 79.7, 89.4, 91.5, 113.4, 114.0, 115.2, 116.5, 122.8, 133.5, 133.6, 133.7, 151.5, 160.3, 163.0, 164.6.

Anal. Calcd for $C_{20}H_{16}O_4$: C, 74.99; H, 5.03. Found: C, 75.23; H, 4.85.

22c

Yield: 275 mg (58%); brown solid; mp 126–127 °C.

IR (KBr): 1725, 2221, 2945 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.40 (t, *J* = 6.8 Hz, 3 H, CH₃), 4.01 (q, *J* = 6.8 Hz, 2 H, OCH₂), 5.09 (s, 2 H, OCH₂), 5.93 (s, 1 H, =CH), 6.83 (d, *J* = 7.6 Hz, 2 H, ArH), 7.29–7.34 (m, 1 H, ArH), 7.39 (d, *J* = 7.6 Hz, 3 H, ArH), 7.56 (t, *J* = 8.0 Hz, 1 H, ArH), 7.87 (d, *J* = 8.0 Hz, 1 H, ArH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.7, 58.0, 63.6, 79.5, 89.5, 91.7, 113.2, 114.5, 116.8, 123.2, 124.0, 132.5, 133.6, 153.4, 159.7, 162.7, 164.8.

Anal. Calcd for $C_{20}H_{16}O_4$: C, 74.99; H, 5.03. Found: C, 74.73; H, 4.88.

22d

Yield: 295 mg (73%); brown solid; mp 110–111 °C.

IR (KBr): 1734, 2229, 2931 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.21 (s, 3 H, CH₃), 3.82 (s, 3 H, OCH₃), 4.87 (s, 2 H, OCH₂), 5.62 (s, 1 H, ArH), 5.83 (s, 1 H, ArH), 6.83 (d, *J* = 8.4 Hz, 2 H, ArH), 7.38 (d, *J* = 8.4 Hz, 2 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 20.1, 20.6, 29.2, 89.4, 95.1, 95.7, 99.8, 114.1, 160.1, 160.9, 163.8, 166.0, 170.0.

Anal. Calcd for $C_{16}H_{14}O_4$: C, 71.10; H, 5.22. Found: C, 71.03; H, 5.32.

Pyranocoumarin and Pyranopyran Derivatives 23a–d; Compound 23a; Typical Procedure

A mixture of compound **22a** (100 mg, 0.24 mmol), molecular iodine (183 mg, 0.72 mmol), anhydrous NaHCO₃ (60 mg, 0.72 mmol) was stirred in anhydrous MeCN (10 mL) at r.t. for 6 h and then CH_2Cl_2 (50 mL) was added to the reaction mixture. The organic phase was washed successively with 10% aq Na₂S₂O₃ (15 mL), H₂O (15 mL) and brine (15 mL), and dried (Na₂CO₃). The solvent was removed under reduced pressure and the crude product was purified by silica

© Georg Thieme Verlag Stuttgart · New York

gel (230–400 mesh) column chromatography using PE–EtOAc (9.7:0.3) as eluent to give the solid product **23a**; yield: 90 mg (65%); yellow solid; mp 142–143 °C.

IR (KBr): 1732, 2931 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.84 (s, 3 H, OCH₃), 5.29 (s, 2 H, OCH₂), 6.91 (d, *J* = 8.8 Hz, 2 H, ArH), 7.11 (d, *J* = 8.4 Hz, 2 H, ArH), 7.26–7.31 (m, 2 H, ArH), 7.56 (t, *J* = 7.6 Hz, 1 H, ArH), 7.82 (d, *J* = 7.6 Hz, 1 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 55.1, 76.6, 84.8, 101.4, 113.4, 114.5, 116.7, 123.1, 124.1, 129.6, 132.2, 132.9, 139.0, 153.4, 157.7, 159.2, 161.4.

MS (ESI): $m/z = 432.87 [M + H]^+$.

Anal. Calcd for $C_{19}H_{13}IO_4$: C, 52.80; H, 3.03. Found: C, 52.97; H, 3.23.

23b

Yield: 95 mg (68%); yellow solid; mp 136-138 °C.

IR (KBr): 1727, 2924 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.43 (s, 3 H, CH₃), 3.84 (s, 3 H, OCH₃), 5.27 (s, 2 H, OCH₂), 6.91 (d, *J* = 8.8 Hz, 2 H, ArH), 7.10 (d, *J* = 8.4 Hz, 2 H, ArH), 7.16 (d, *J* = 8.4 Hz, 1 H, ArH), 7.35 (d, *J* = 8.4 Hz, 1 H, ArH), 7.62 (s, 1 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 55.1, 76.5, 84.6, 104.3, 113.4, 114.2, 116.5, 122.7, 129.6, 132.3, 133.8, 134.0, 139.1, 151.6, 157.9, 159.1, 161.5.

MS (ESI): $m/z = 672.71 [M + Na]^+$.

Anal. Calcd for $C_{20}H_{15}IO_4$: C, 53.83; H, 3.39. Found: C, 53.78; H, 3.13.

23c

Yield: 100 mg (72%); yellow solid; mp 146-148 °C.

IR (KBr): 1730, 2922 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 1.43$ (t, J = 7.2 Hz, 3 H, CH₃), 4.04 (q, J = 7.2 Hz, 2 H, OCH₂), 5.28 (s, 2 H, OCH₂), 6.90 (d, J = 8.4 Hz, 2 H, ArH), 7.09 (d, J = 8.8 Hz, 2 H, ArH), 7.27–7.31 (m, 2 H, ArH), 7.54 (dt, J = 8.8, 1.2 Hz, 1 H, ArH), 7.82 (d, J = 8.8 Hz, 1 H, ArH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.9$, 63.3, 76.6, 84.8, 104.4, 113.9, 114.5, 116.7, 123.1, 124.1, 129.6, 132.0, 132.9, 139.0, 153.4, 157.7, 158.6, 161.4.

MS (ESI): $m/z = 432.87 [M + H]^+$.

Anal. Calcd for $C_{20}H_{15}IO_4$: C, 53.83; H, 3.39. Found: C, 54.01; H, 3.26.

23d

Yield: 80 mg (55%); yellow solid; mp 135-137 °C.

IR (KBr): 1729, 2925 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.20 (s, 3 H, CH₃), 3.83 (s, 3 H, OCH₃), 5.01 (s, 2 H, OCH₂), 5.87 (s, 1 H, ArH), 6.89 (d, *J* = 8.4 Hz, 2 H, ArH), 7.07 (d, *J* = 8.4 Hz, 2 H, ArH).

¹³C NMR (100 MHz, CDCl₃): δ = 20.4, 55.1, 76.2, 82.8, 99.3, 101.6, 113.3, 129.6, 132.1, 138.5, 159.1, 164.1, 166.4.

MS (ESI): $m/z = 396.88 [M + H]^+$.

Anal. Calcd for $C_{16}H_{13}IO_4$: C, 48.51; H, 3.31. Found: C, 48.47; H, 3.13.

Acknowledgment

K.C.M. is thankful to UGC (New Delhi) for an Emeritus Fellowship. B.S., S.G., and D.G. are grateful to CSIR (New Delhi) for Senior Research fellowships. I.A. is grateful to UGC (New Delhi) for a Senior Research fellowship. We also thank DST (New Delhi) for providing Perkin-Elmer L 120-000A IR spectrometer, Bruker DPX-400 NMR spectrometer, and 2400 series II CHN analyzer under its FIST program.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (1) Present address: Department of Chemistry, The University of Burdwan, Burdwan, W. B., India.
- (2) (a) Wang, G. X.; Wang, N. X.; Shi, T.; Yu, J. L.; Tang, X. L. *Prog. Chem.* 2008, 20, 518. (b) Zhendong, J.; Ying, K. PCT Int Appl WO 2004058738, 2004. (c) Iwata, N.; Wang, N.; Yao, X.; Kitanaka, S. J. Nat. Prod. 2004, 67, 1106. (d) Hu, H.; Harrison, T. J.; Wilson, P. D. J. Org. Chem. 2004, 69, 3782. (e) Mun, J.; Jabbar, A. A.; Devi, N. S.; Yin, S.; Wang, Y.; Tan, C.; Culver, D.; Snyder, J. P.; Van Meir, E. G.; Goodman, M. M. J. Med. Chem. 2012, 55, 6738. (f) Harel, D.; Schepmann, D.; Prinz, H.; Brun, R.; Schmidt, T. J.; Wunsch, B. J. Med. Chem. 2013, 56, 7442. (g) Bonadies, F.; Di Fabio, R.; Bonini, C. J. Org. Chem. 1984, 49, 1647. (h) Morandim, A. A.; Bergamo, D. C. B.; Kato, M. J.; Cavalheiro, A. J.; Bolzani, V. S.; Furlan, M. Phytochem. Anal. 2005, 16, 282.
- (3) Kwak, J. H.; Kang, H. E.; Jung, J. K.; Kim, H.; Cho, J.; Lee, H. Arch. Pharm. Res. 2006, 29, 934.
- (4) Emami, S.; Kebriaeezadeh, A.; Zamani, M. J.; Shafiee, A. Bioorg. Med. Chem. Lett. 2006, 16, 1803.
- (5) Kanbe, Y.; Kim, M. H.; Nishimoto, M.; Ohtake, Y.; Kato, N.; Tsunenari, T.; Taniguchi, K.; Ohizumi, I.; Kaiho, S.; Morikawa, K.; Jo, J. C.; Lim, H. S.; Kim, H. Y. *Bioorg. Med. Chem.* **2006**, *14*, 4803.
- (6) Koufaki, M.; Kiziridi, C.; Alexi, X.; Alexis, M. N. Bioorg. Med. Chem. 2009, 17, 6432.
- (a) Torrejón, G. C.; Kahn, S. A.; Lagarde, N.; Castellano, F.; (7)Leblanc, K.; Rodrigo, J.; Frenkel, V. M.; de Arias, A. R.; Ferreira, M. E.; Thirant, C.; Fournet, A.; Figadère, B. Chneiweiss, H.; Poupon, E. J. Nat. Prod. 2012, 75, 257. (b) Krohn, K.; Sohrab, Md. H.; van Ree, T.; Draeger, S. Schulz, B.; Antus, S.; Kurtan, T. Eur. J. Org. Chem. 2008, 5638. (c) Stewart, A. M.; Meier, K.; Schulz, B.; Steinert, M.; Snider, B. B. J. Org. Chem. 2010, 75, 6057. (d) Ma, T.; Liu, L.; Xue, H.; Li, L.; Han, C.; Wang, L.; Chen, Z.; Liu, G. J. Med. Chem. 2008, 51, 1432. (e) Kang, H.-S.; Kim, K.-R.; Jun, E.-M.; Park, S.-H.; Lee, T.-S.; Suh, J.-W.; Kim, J.-P. Bioorg. Med. Chem. Lett. 2008, 18, 4047. (f) Mo, S.; Wang, S.; Zhou, G.; Yang, Y.; Li, Y.; Chen, X.; Shi, J. J. Nat. Prod. 2004, 67, 823. (g) Jung, E. J.; Park, B. H.; Lee, Y. R. Green Chem. 2010, 12, 2003.
- (8) (a) Mali, R. S.; Joshi, P. P.; Sandhu, P. K.; Manekar-Tilve, A. J. Chem. Soc., Perkin Trans. 1 2002, 371. (b) Shen, Y.-C.; Wang, L.-T.; Chen, C.-Y. Tetrahedron Lett. 2004, 45, 187. (c) Fong, W.-F.; Shen, X.-L.; Globisch, C.; Wiese, M.; Chen, G.-Y.; Zhu, G.-Y.; Yu, Z.-L.; Tse, A. K.-W.; Hu, Y.-J. Bioorg. Med. Chem. 2008, 16, 3694. (d) Xie, L.; Takeuchi, Y.; Cosentino, L. M.; McPhail, A. T.; Lee, K.-H. J. Med. Chem. 2001, 44, 664. (e) Su, C.-R.; Yeh, S.-F.; Liu, C. M.; Damu, A. G.; Kuo, T.-H.; Chiang, P.-C.; Bastow, K. F.; Lee,

K.-H.; Wu, T.-S. *Bioorg. Med. Chem.* **2009**, *17*, 6137. (f) Nicolaides, D. N.; Gautam, D. R.; Litinas, K. E.; Hadjipavlou-Litina, D. J.; Fylaktakidou, K. C. *Eur. J. Med. Chem.* **2004**, *39*, 323.

- (9) (a) Stefan, B.; Larsson, L. G.; Rényi, L.; Ross, S. B.; Thorberg, S.-O.; Thorell-Svantesson, G. *J. Med. Chem.* **1998**, *41*, 1934. (b) Ishizuka, N.; Matsumura, K.; Sakai, K.; Fujimoto, M.; Mihara, S.; Yamamori, T. *J. Med. Chem.* **2002**, *45*, 2041.
- (10) (a) Menon, R. S.; Findlay, A. D.; Bissember, A. C.; Banwell, M. G. J. Org. Chem. 2009, 74, 8901. (b) Majumdar, K. C.; Chakravorty, S.; De, N. Tetrahedron Lett. 2008, 49, 3419. (c) Majumdar, K. C.; Mondal, S. Tetrahedron Lett. 2009, 50, 4781. (d) Barluenga, J.; Trincado, M.; Marco-Arias, M.; Ballesteros, A.; Rubio, E.; Gonzalez, J. M. Chem. Commun. 2005, 2008.
- (11) (a) Liu, Y.; Zhu, J.; Qian, J.; Jiang, B.; Xu, Z. J. Org. Chem.
 2011, 76, 9096. (b) Appendino, G.; Cravotto, G.; Giovenzana, G. B.; Palmisano, G. J. Nat. Prod. 1999, 62, 1627. (c) Sagar, R.; Park, J.; Koh, M.; Park, S. B. J. Org. Chem. 2009, 74, 2171.
- (12) (a) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2007, 46, 4764. (b) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2006, 71, 62. (c) Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905. (d) He, Z.; Li, H.; Li, Z. J. Org. Chem. 2010, 75, 4636. (e) Banwell, M. G.; Wills, A. C.; Hamel, E. Aust. J. Chem. 1999, 52, 767. (f) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. Org. Lett. 2001, 3, 651. (g) Larock, R. C.; Yue, D. Tetrahedron Lett. 2001, 42, 6011. (h) Hessian, K. O.; Flynn, B. L. Org. Lett. 2003, 5, 4377. (i) Kesharwani, T.; Worlikar, S. A.; Larock, R. C. J. Org. Chem. 2006, 71, 2307. (j) Sniady, A.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2005, 7, 1769. (k) Yao, T.; Zhang, X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679. (1) Xie, Y.-X.; Liu, X.-Y.; Wu, L.-Y.; Han, Y.; Zhao, L.-B.; Fan, M.-J.; Liang, Y.-M. Eur. J. Org. Chem. 2008. 1013.
- (13) (a) Barluenga, J.; Trincado, M.; Rublio, E.; Gonzalez, J. M. Angew. Chem. Int. Ed. 2003, 42, 2406. (b) Amjad, M.; Knight, D. W. Tetrahedron Lett. 2004, 45, 539. (c) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037. (d) Barluenga, J.; Vazque-Villa, H.; Ballesteros, A.; Gonzalez, J. M. J. Am. Chem. Soc. 2003, 125, 9028. (e) Yue, D.; Della Ca, N.; Larock, R. C. Org. Lett. 2004, 6, 1581. (f) Majumdar, K. C.; Ray, K.; Ponra, S. Tetrahedron Lett. 2010, 51, 5437. (g) Majumdar, K. C.; Sinha, B.; Ansary, I.; Chakravorty, S. Synlett 2010, 1407. (h) Majumdar, K. C.; Ansary, I.; Sinha, B.; Roy, B.; Sridhar, B. Synthesis 2011, 3287.
- (14) (a) Worlikar, S. A.; Kesharwani, T.; Yao, T.; Larock, R. C. *J. Org. Chem.* 2007, *72*, 1347. (b) Masters, K.-S.; Flynn, B. L. *J. Org. Chem.* 2008, *73*, 8081. (c) Godoi, B.; Speranc, A.; Back, D. F.; Brandao, R.; Nogueira, C. W.; Zeni, G. *J. Org. Chem.* 2009, *74*, 3469.
- (15) CCDC-809664 contains the supplementary crystallographic data of the compound 17a. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk.

This is a copy of the author's personal reprint